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'elastic' scattering on a leaky surface of constant negative curvature-are analysed theareti- 
cally and seme to  interpret previously obtained numerical results. The low energy scattering 
behaviour is shown to be influenced, in the usual fashion, by a bound state just below the 
scattering continuum threshold. A connection between the widths of the infinite number 
of simple poles of the S-matrix and the Lyapunav exponent for classical trajectories is 
analysed. At high energies, the scattering is characterized by fluctuations in the S-matrix 
(via its phase) and the time delay. Analytic expressions for the autocorrelation function 
of the S-matrix and of the time delay are obtained using Montgomery's conjecture for the 
pair correlation function of the celebrated Riemann zeros whore values correspond to the 
positions of the .%matrix poles in momentum space. T h e  autocorrelation function for the 
S-matrix is found to be Lorentzian asymptotically (at large energy differences AE), that 
is, to decrease as AE-'. but that for the time delay is not. The distribution of fluctuations 
of S-matrix phases is likely to be Gaussian. 

1. Introduction 

Stochastic properties of quantum scattering models and in particular the manifestation 
of stochasticity in scattering observables have been investigated with increasing 
frequency in the past decade [l, 21. Whereas stochastic properties of bound systems 
are quite well understood, this is not yet the case for scattering processes. This is 
primarily due to the fact that characteristics of stochastic properties of such systems 
(at least in the classical and semiclassical limits) have rigorous formulations only 
asymptotically in time ([+a), for example the Lyapunov exponent. Scattering pro- 
cesses are usually characterized by finite interaction time so that most results concerning 
bound systems cannot be applied directly to scattering processes. 

Due to the fundamental importance of the problem of chaotic scattering for theories 
of nuciear [ I ,  3,4j  and moiecuiar [5j  reactions, a number ofdiiierent approaches have 
been developed for description of this phenomenon. Two types of approaches are now 
widely accepted: semiclassical [ 5 ]  and stochastic [l,  3,4]. Neither can be considered 
as complete and each has its advantages and drawbacks. The semiclassical approach 
appeals to a number of well established chaotic properties of classical dynamical 
systems but is restricted by the condition of rather high collision energies. On the other 
hand, the statistical approach is capable, in principle, of describing purely quantum 
features of chaotic scattering but is based on the ad hoc introduction of stochasticity. 

t Permanent address: Institute of Chemical Physics, Academy of Sciences, GSP-I, 111917 Moscow, USSR, 
t: NSERC of Canada University Research Fellow. 
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Recently there has been important progress in the development and justification 
of both approaches [5-81. However, in order to understand details and peculiarities 
of the manifestation of chaos in quantum scattering it is of interest to investigate 
properties of some analytically solved problems even if they are so greatly simplified 
as to be far from physical reality. One such problem is scattering on a leaky surface 
of constant negative curvature [9-111. There are several papers concerning analysis of 
this problem [ll, 121 but in all of them the effect of stochasticity, in particular on the 
behaviour of the time delay, has been expIored numerically and without analytica! 
treatment of such characteristics as the pair correlation function, the distribution of 
fluctuations, etc. 

It is well known that the stochastic properties of scattering on a leaky surface of 
negative curvature are closely connected to those of the non-trivial zeros ofthe Riemann 
5-function but this connection has not yet been explicitly exploited. This paper is 
devoted to thorough discussion of properties of time delay and quantum phases utilizing 
the known properties of {-function zeros. The possible consequences for realistic 
systems are also mentioned. 

2. Formulation of the problem 

ScattKi:ng of a pcrticle on 1 !e&y onrface of neg2tive c”TV2t”rP (half-plane E.{(& y )  E 

H =- (h2 /2mR2)y2(J2 /Jx2+J2 /Jy2) -h2 /8mR2 (2.1) 

R21y > 0)) is described by the Hamiltonian 

where m is the mass of the particle and R is a radius of curvature. For brevity we 
henceforth put h = m = R = 1. Free motion on negative curvature surfaces is quite 
different from that on conventional zero curvature ones in that it corresponds to rapidly 
divergent ‘piane’ waves (for detaiis see i i3Jj .  in  such a case boundary conditions o i  
the tesselation type result in stochastic dynamics. In the problem of scattering on a 
leaky surface with tesselation, as described in [ l l ] ,  the following expression for the 
scattering wave has been derived: 

glk(Y) =y”2[y -”+  S(k)y‘k] as y+oo (2.2) 
where k = ( 2 E ) ” 2  is the wavevector corresponding to the energy E of scattered particle. 
The S-matrix S(k)  is determined by the expression 

r ( f+ ik )  5(1+2ik) 
r ( f - ik)  c(1-2ik) 

S ( k )  = $,-*ik 

where 5” = w, - i/4 and b = l n ( 2 ~ )  - 1 - y / 2  ( y  is the Euler constant). The values w, E R 
(-w< w,<W) are the coordinates of the non-degenerate Riemann zeros along the 
line Re k =$ Y = f -  2iw,. Here the scattering is ’elastic’ since IS(k)l= 1 and scattering 
is manifested only in a phaseshift, i.e. 

S(k)=exp[i+(k)]. (2.4) 

The values under study are the phaseshift +(k) and the time deiay T ( k ) ,  expressed 
by the well known formula [12, 141 

T(k)=- iS*dS/dE = d + / d E = ( l / k ) d + / d k  (2.5) 
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For convenience of future presentation we introduce the parameter 

T(k(E))=  T(E)k(E)=d+/dk .  (2.6) 

There is a simple relation between ~ ( k )  and the zeros of the [-function [12] 

(2.7) 
1 1 1 

~ ( k )  = 46 -2  I n ( ? r ) - c + f  1 +t z z + k  w . ( ~ ) 2 + ~ t  w u ( $ ) 2 + ( k + ~ , ) 2 '  

i t  is easy to understand that the behaviour of ~ ( k )  I s  directly determined by the 
characteristic properties of the distribution of zeros of the c-function. Indeed, let us 
introduce a density of zeros 

p ( k ) = 1  a(k-wv).  (2.8) 
VI 

Using equation (2.8) we can rewrite the expression (2.7) in the following way: 

~ ( k )  =46 -2  In(a)-,+$ dwp(w)f(w)+f dwp(w)f(w - k) (2.9) 
m m 1 

F +  k 

where 

f ( k )  = [(a)2+k2]-' (2.10) 

The phaseshift + ( k ) ,  whose value can (in principle) be observed experimentally for 
realistic systems, can now be expressed through ~ ( k ) .  It is clear that the phaseshift is 
defined up to an arbitrary constant reference phase. That is, the physical meaning can 
be ascribed not to + ( k )  itself but, for example, to 

+ ( k )  - + ( k , ) =  J - dw ~ ( w )  = P ( k -  k0)-2[tanh-'(2k) -tanh-'(2ko)] 
b 

m 

dwf(W)[N(w+k)-N(w+ko)]. (2.11) 

Here 
m 

B=46-2In(m)+f c dwp(w).f(w) (2.12) J -m 

and 
r k  

(2.13) 

is the total number of zeros in the interval (0, k). In deriving equation (2.11) we took 
into account the obvious relation 

m m 

dw p (  w)f( w - k )  = dw p ( w +  k ) f (  w). (2.14) 

The formulae (2.8)-(2.11) clearly show that properties of both phaseshift + ( k )  and 
time delay T(k) are completely governed by the density of zeros p ( k ) .  

The stochastic properties of the distribution of zeros have been investigated both 
analytically and numerically [15,16]. A large number of exact results and different 
asymptotic relations were derived some years ago and, more recently, computationally 
intensive numerical studies have been undertaken to check these various analytical 

I-, I-, 
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results [ 161. It is evident that many of these results can be used for deriving correspond- 
ing relations for T(k) and 4(k) .  This is the primary goal of the paper. However, we 
shall start our discussion with the limit of low scattering energy. The stochasticity of 
scattering does not show itself in this limit, but nevertheless this analysis will enable 
us to understand some characteristic peculiarities of the behaviour of T(k) and 4 (k )  
atklow k and will demonstrate a close relation of the rather artificial model system to 
conventional scattering systems. 

A Shushin and D M Wardlaw 

3. Low energy scattering limit 

In spite of the absence of stochasticity the low energy scattering limit is nevertheless 
interesting because the S-matrix (2.3) and time delay clearly display resonance-like 
behaviour in the region k < 1. Indeed, the expression (2.3) shows that at low k < f (E < Q) 

and 

where Po is a constant approximately independent of k At low energies (E <:) all 
other terms in expression (2.3) as well as the dependence of p o  on k are negligible to 
an accuracy I lk ,  -0.15, where k, is the coordinate of the first non-trivial zero of the 
l-function (closest to w = 0). To the same accuracy exp(-kp) is neglected in equation 
(3.1). 

The origin of the pole in (3.1) as well as the Lorentzian dependence in (3.2) are 
physically very natural. We know that among those eigenstates of equation (2.1) below 
the continuum threshold and satisfying the tesselation boundary condition, there is 
one which is closest to the continuum. This is the eigenstate $ , ( y )  =constant, corres- 
ponding to the eigenenergy Eb= -:. The negative sign of E, indicates the energy is 
below the continuum threshold. 

near the continuum, the S-matrix has a singularity on the complex energy plane near 
the point E = O  (on the physical sheet). Here we shall show that such a singularity is 
consistent with the analytical expression (3.1). 

First we note that in spite of the fact that the problem considered is actually ZD, 
all waves inhomogeneous in the x direction are highly localized at y < 1 (i.e. correspond 
to bound states [ 111) whereas at large y >  1 the problem for delocalized states becomes 
effectively ID. This reveals that the strongly chaotic scattering region is localized at 
y =  1. Therefore at small k < f  (corresponding to small energy E <$) we can restrict 
ourselves to investigation of I D  solutions of type (1.2) and replace the effect of the 
region of strong scattering by a proper boundary condition. The boundary condition 
can be found by a well known method in the theory of low energy resonance scattering 
[17,18]. 

In order to employ conventional quantum scattering theory it is worth reducing 
equation (2.1) to a Schrodinger-type equation in flat space. After the change of variables: 

!! in we!! known [!71 !Xj that in the presence of a n  eigensrate with negative energy 

y = In(z) and IL =exp(z/2)4 (3.3) 
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we have 

- f [J2/Jr2+exp(2z)J2/~x2]~~ = k2&. (3.4) 

db(2) exp(-z/2)$b(z) =exp(-KhZ) Kb=(21&1)”2=f (3.5) 

A solution of equation (3.4) is the state 

which resembles a bound one since +b decreases exponentially as z + m ($,, = constant). 
Now we briefly recall the basic points of low energy resonance scattering theory. 

Let us consider the io scattering of particles by a potential V ( z )  located at z = 0 and 
which possesses a bound state (bb(z) close to the continuum. Closeness to the continuum 
is defined by two conditions: first, the characteristic size I =  K; ’  of the wavefunction 
4 b ( ~ )  is much larger than the range a of the potential and, second, the energy iEbl of 
the bound state is much closer to the continuum threshold than to all other characteristic 

the first point is in fact the consequence of the second one so that the second point 
can be considered as a definition of closeness. 

If the positive energy Ex of the scattered particle is also low so that EkIEbI, then 
the effect of the potential V(z) on (bk can be described by the boundary condition at 
z = o  

4;’(z) dh/dzlz-o= 1 / A  (3.6) 

where A is a constant. To find this constant we notice that both states (bb and 4k are 
closer to each other than to all other singularities (except for that at E = 0). This means 
that logarithmic derivatives of +b and 4k at z + O  coincide with each other with an 
accuracy K b / k , < <  1, where k,=(2IE,I)”’ is the wavevector, corresponding to the S- 
matrix singularity closest in energy to 4b: 

sing.!Er;.cics af thc - . l?ztdr  (other baofld or q!!d?e..t..d S!I!PS, etc). I! Is no!ed the! 

4;’ d&/dzlz-o= 4;’ d9b/dzlZ-o. (3.7) 

The relation (3.7) enables us to obtain the characteristic behaviour of the S-matrix at 
small k [17,18]. 

Let us return to our scattering problem determined by equation (3.4). Strictly 
speaking there are no small parameters in the theory which would ensure that the 
energies of all singularities of the S-matrix other than Eh are much higher in absolute 
value than IEbl=& However, numerical solution of the problem (in fact, numerical 
calculation of the lowest zeros of the c-function) shows that all resonances are actually 
much higher in energy than lEbl. Thus the second condition is fortuitously fulfilled in 
our process. As for the first condition, it is also fulfilled in the process under study. 
Indeed, the only parameters whose dimension is length (except for the wavelength) 

is equivalent to the size of the potential in the problem of potential scattering) which 
is given by the radii of boundary semicircles of the tesselation cell [ l l ,  131: Ro=f .  
Thus we get for the parameter characterizing the first condition: K~R, ,  =f .  Again the 
smallness of this parameter should be considered as fortuitous. It leads to approximate 
independence of equation (3.7) on the particular choice of IzI  < 1. 

Expressing Ck through $k by change of variables (3.3) and substituting it in equation 
(3.7) we obtain the expression 

arc !hc carVa!nrc :adlas. a = ! and the size of the reglen nf strong sc2!tcring (which 

~ ~ - i k  i - i k  S(k)= --= -- 
Kb+lk $+ik (3.8) 



1508 A Shushin and D M Wardlaw 

which coincides with equation (3.1) derived from the exact expression (2.3). Con- 
sequently we conclude that both the pole of S ( k )  and the resonance of T ( k )  at k = O  
are actually due to resonance scattering by the ‘bound‘ state 4b. Now we understand 
that the width a of this threshold resonance of ~ ( k )  is nothing else but 21Ebl, twice the 
‘binding’ energy in the state 4b. The sense of the condition K b / k , e  1 also becomes 
quite clear: it means that the resonance at k = 0 can be considered as isolated from 
all other resonances. The validity of this condition was clearly demonstrated by 
numerical calculation in [ 121. 

In principle, the theory of low energy resonance scattering could also be applied 
to a representation in terms of $-functions: $band $k .  Repeating all previous arguments 
one can derive 

$L’ d$*/dA-i = $b’ d$b/dYly-i = O  (3.9) 
and after that derive the same expression (3.8) for S ( k ) .  

It is seen from equation (2.7) that low energy resonance scattering results in a 
negative contribution to the time delay T ( k ) .  Such an effect is easily understood if we 
take into consideration the fact that in the presence of a bound state near the continuum 
the low energy particle is scattered not by the region of effective scattering itself but 
by this weakly bounded state which is of greater extent. Scattering by the bound state 
means that the particle does not spend as much time in the region as it would in the 
absence of this state. In other words, the contribution of this effect to T ( k )  should be 
negative. 

4. High energy scattering limit 

The most interesting limit, from a physical point of view, is the high energy one in 
which scattering shows stochastic properties. We begin investigation of this limit with 
discussion of a general characteristic feature of the S-matrix and time delay before 
addressing a few selected attributes of each. 

4.1. A connection between resonance width and the Lyapunov exponent 

Expression (1.3) shows that the S-matrix has an infinite number of simple poles at 
coordinates of the Riemann zeros of the (-function. Up to moderately high energies 
the poles are well separated and can be interpreted as resonances of the S-matrix due 
to the presence of some quasibound states in the system resulting from a delicate 
interference of scattering waves after tesselation. These poles make Lorentzian contribu- 
tions to the time delay T ( k ) .  An interesting feature is that the halfwidth A of all such 
Lorentzians is independent of k: A=;. 

In order to understand the halfwidth we can apply the theory of quantization of 
semiclassical orbits developed in [ l l ,  121. It is well known that in negative curvature 
space all classical trajectories are unstable and the corresponding Lyapunov exponent 
is [13] 

w(E)=(2E)’” .  

It is shown in [ 19,201 that an unstable quasiperiodic orbit j gives a contribution to 
the Green function, and thus to the S-matrix, of type 

G S , ( E ) - [ S , ( E )  -s4,+iw,q/2]-’ (4.1 ) 
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where & ( E )  is the action along the quasiperiodic trajectory with the energy E, Sa, is 
the quantized action corresponding to j t h  quasistationary state, w, = w (  E,) is the 
Lyapunov exponent of the j th  orbit with the energy Ej ,  and T, = J S J J E I ~ ,  is the period 
of this orbit. Expanding the denominator of JS, in AE = E - E j  we get 

&,(E)  - (AE +iwj/2)-'. (4.2) 

SS, - (k - [,)-I 

k T ~ . . r  IXIP ,-an .-,.----a +hip ..--+-:I...+:-.. . 4 r h  +La PVO.+ -ID 
I.-" "U I Y L .  '"L.LYYLC L u l l  CUl lLl lVULlUl l  W L U B  LI.C G A Y C L  " L l l  

(4.3) 

where 6, = kj -i/4 and k, = (2Ej)'l2 corresponds to j t h  Riemann zero. Expanding 
k=[2(k:+PE)]"* in AE one obtains 

fisc, - [A' + (i/+(2Ej)'I2j-' = @ E  + iej/4)-l, (4.4) 

The expression (4.4) is very close to equation (4.2). This means that the parameters 
of the S-matrix poles (2.3) (except for their positions) can actually he understood in 
terms of the theory developed in [20] for physically realistic systems. The origin of 
the factor of 2 difference between imaginary terms in equations (4.2) and (4.4) is 
unknown but we believe it is due to some difference between the dynamics of the 
realistic systems considered in [20] and 'dynamics' resulting from tesselation in the 
model under study. It is clear that in explaining the characteristic parameters of the 
poles we thus explain simultaneously the unexpected independence of the halfwidth 
of Lorentzians in the time delay T(k) on k 

At this point some comments are needed. In order to find the characteristics of the 
S-matrix poles we have used Gutzwiller's semiclassical approach [20]. It is known 
j2 i j  that in generai this approach faiis to predict correctiy the eigenvaiues, i.e. poies 
of the Green function, at high energies when the associated resonances in the density 
of states strongly overlap. In this case any analysis of individual resonances (in our 
problem in the k-dependence of the time delay T(k)) becomes senseless. Numerical 
results show, however [12], that at moderately high energies, corresponding to about 
the first 50 poles of S ( k ) ,  the above-mentioned resonances are still well resolved yet 
LLIG c,,c,g,y I> rrrg,, c,ruug,r I", LllC va,,urry "1 ,115 JCL,IIbIP>SIL.PI app"V*"1L'L1u,r a,,u L"Lu.5 

Gutzwiller's approach. The analysis carried out here is accordingly valid for separated 
poles at moderately high energies. 

.L. L:_L -L .... :>:... .c.l.- -.-:-a-..:--, ;--.:-~. ..., 

4.2. Correlation function of T(k) 

Now let us consider stochastic properties of T(k! at large k and thus high energies E. 
Formula (2.9) shows that these properties are determined by those of the density of 
the Riemann zeros. It is convenient to divide T(k) into two parts: a smooth regular 
part i( k) 

m 

i (k )  = p -($+ k')-'+f ( dwp(w)f(w - k )  (4.5) 
J -m 

and a fluctuating part 

(4.6) 
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In equations (4.5) and (4.6) 

A Shushin and D M Wardlaw 

P(k) * Z m r - '  In(k / r )  (4.7) 

is the average density of zeros [4,7] and 

d k ) = d k ) - F ( k )  (4.8) 

is the fluctuating part of the density. In what follows we shall discuss only the properties 
of Tf(k). 

The basic characteristics of ry(k) are embodied in its pair correlation function 

c(k, k') = (7r(k)Tr(k'))nk/(7:(k))~k (4.9) 

where 

(7;(k)Tr( ,y)>Ak 
ka+Ak 

b 
=(Ak) - ' I  dwTf(k+w)7f(k'+w) 

The last line of equation (4.10) is clear13 valid because f (w)  is highly localized in the 
region w < 1 and (u(w)u(w')) is a slowly varying function of b (ln(b)). The averaging 
interval in (4.10) is assumed to be much smaller than ko but much larger than the 
average spacing between zeros: ko>>Ak >>b(kJ'. After averaging (4.10) C ( k ,  k') 
becomes dependent on k and k' only through the difference k -  k' (see below). 

For some values of b and Ak the correlation function C(k,  k') has been 
caicuiaied numericaiiy in [ i i j .  i iere we obtain this function anaiyiicaiiy. An anaiyiicai 
expression for the correlation function (u(k)u(k')) at k, k '+m has been conjectured 
by Montgomery [22] on the basis of rather reasonable 'heuristic' arguments and appears 
to coincide with that for energy levels of the Gaussian unitary ensemble (GUE) 

sin2a(x-x ' )  
r 2 ( x  - x')' 

K(x-x ' )  =(u(x)u(x ' ) )= 8(x-x')-  (4.11) 

In equation (4.11) x is the k-variable scaled so as to have unit mean spacing. 
The function has important properties: 

m 

dxK(x)=O (4.12) 

and 

~oxdx[oxdx 'K(x -x ' )  X - m  - In(X). 
(4.13) 

The second one is closely connected to the fact that the rigidity of GUE energy levels 
is proportional to In(X) [23]. 

Substituting (4.10) into (4.9) we find that C(k,  k') depends only on the difference 
Q = k- k' and 
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where q = jQ. For k, k'+ m the density p(k) + m (see equation (4.7)) so that in this limit 

Comparison of a numerically calculated C ( Q )  [I21 with that obtained by equations 
(4.14) and (4.15) is shown in figure 1; equations (4.14) and (4.15) are indistinguishable 
on the scale of plot. The baseline (C=O) for the numerically calculated C(Q) is 
obtained by choosing C(!) = O ;  the line determined by equating the integral of C ( Q )  
over Q to zero is located slightly higher (corresponding to C =0.05). 

The agreement is quite reasonable if we take into account the fact that numerical 
calculations were carried out for large but finite k and k' while the expression (4.11) 
is valid asymptotically at k, k'+m. It is well known that the convergence of all 
characteristics of the Riemann zeros to the asymptotic ones is extremely slow (as ]/In k 
or even I/(lnk)"2 [15]). We see that the two curves differ somewhat only for Qz2. 
The main contribution to C(Q) at such Q comes from K ( x - x ' )  at large Ix-x'I. The 
deviation of the conjectured K ( x - x ' )  (4.11) from the actual correlation function, as 
determined by numerical analysis of the Riemann zeros, is well known for Ix - x'I >> 1 
[161. The corresponding difference for C ( Q )  is even more pronounced than for 
K ( x - x ' ) .  The high frequency fluctuations of p(k), whose correlation function is 
reasonably described by Montgomery's formula (4.1 I ) ,  are significantly suppressed in 
T(k) due to convolution with the smooth function f(w) in (4.6). The fluctuations of 
r(k) at k >  1 seem instead to be determined by lower frequency fluctuations of p(k) 
at large k, whose contribution to the correlation function K ( x - x ' )  is not taken into 
account by the Montgomery conjecture [8]. The deviation, very small and almost 
indistinguishable in K ( x - x ' ) ,  becomes quite noticeable in C ( Q ) .  

The most convincing explanation of this situation is provided by investigating the 
function 

dx e ' ' "p(x)  (4.16) 

which is nothing else but the Fourier transform of the density of the zeros. This function 
" I R ( i )  =I e'". - 

1.0 

0 . I  

- 
0 

CI 
- 

0 

- 0  5 
2 4 6 0 10 1 

a 
Figure 1. Comparison of the numerically calculated (broken curve) and analyticai (full 
curve, equation (4.15)) time delay correlation functions. "he numerical calculation has 
been made by averaging over IO '  Riemann Zeros near the IO" zero which corresponds 10 
w = 133 826 702 823.5. 
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has recently been studied numerically [I61 and the results show (in complete agreement 
with theoretical considerations [161) that R(1) has pronounced 8-type singularities at 
t ,  = ln(p"), where p are prime numbers and m E 2'. Note that the I, coincide with 
the periods of 'orbits' in the semiclassical interpretation of the &function, as proposed 
by Berry [241. The presence of such singularities means that p(w) can be expressed 
in the form 

A Shushin and D M Wardlaw 

p ( x )  =po(x)+Re 1 A, (4.17) 

where po(x)  is the non-oscillating part of po(x) .  The oscillating terms of (4.17) 
apparently give rise to oscillating contributions to K ( x  -x') of type 

(4.18) 

[.. 1 
K.,(x -x') = Re{A,, exp[i(t. - t,)(x -x')]} 

and thus a corresponding contribution to C( Q) of type 

=Re{A., exp[-21t.*t,lF+i(i.*t,)FQl}. (4.19) 

We see that the low frequency oscillating terms actually manifest themselves much 
more prominently than high frequency ones of the same amplitude. The oscillating 
structure of the numerically calculated C ( Q )  shown in figure 1 results from the 
superposition of some lower frequency terms C,,(Q).  The effect of damping of high 
frequency fluctuations and strong manifestation of low frequency ones observed here 
is quite general and may be important in analysis of realistic chaotic processes in 
which an observable is usually a functional of a fluctuating density of quasibound 
states (or more generally a density of resonances of the S-matrix) with a Lorentzian-type 
smoothing function [ 11. 

It is easily seen that as F + c c  the function C ( Q )  (4.14) very rapidly converges to 
the limiting one C,( 0). This means that the main properties of C (  Q) can be understood 
by the analysis of limiting expression (4.15). First of all C,(Q) changes its sign at 
Q =  Q* =$, so that a Lorentzian approximation [12] is in principle incorrect because 
it does not take into account the fundamental property (4.12) of the distribution of 
zeros. The effect of a change of sign of correlation functions is of general significance 
for the theory of scattering by systems with stochastic behaviour (heavy nuclei, highly 
excited molecules, etc). 

4.3. Stochastic properties of rhe phase +(k)  

Now let us discuss the stochastic properties of the phase of the S-matrix 4 ( k ) .  The 
expression for the pair correlation function of + ( k )  can be obtained by double 
integration of C ( k - k ' )  over k and k' but it is more convenient and useful to exploit 
equation (2.11). As for T ( k ) ,  we separate A + ( k ,  k o ) = + ( k ) - + ( k o )  into two parts: a 
smooth regular part a and a fluctuating part A&. For the more interesting fluctuating 
part we have 

m 

A+r(ko+ k,  ko) = dwf(w)[n(w+ ko+ k )  - n(w+ k,)] (4.20) 

where 

n ( k ) =  dwu(w) loh 
is the fluctuating part of N ( k )  (equation (2.13)). 

(4.21) 
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Using equation (4.20) one can find 

Here 

An(k, w)= n(k+k,+w)-n(k,+ w ) =  dw'u(w'). (4.23) 

Averaging in equation (4.22) is made by integration over k, in the interval Ak<< k,. 
Hereafter for simplicity of notation we omit the argument of averaged functions, 
taking into account that, after averaging, correlation functions depend only on the 
difference of their arguments. 

Characteristic values of w and w' giving dominant contributions to the integral 
(4.22) are determined by the width of the highly localized function f (w)  defined by 
equation (2.10). It is easy to see that for k x  w - w'- 1 

(An(k, w)An(k, w'))=(An(k, 0)2)+0(ln(pw)). (4.24) 

As for (Ar~(k,o)~),  it can be simply calculated at kp >> 1 by using (4.23) and (4.11): 

(An(k, 0)2) 'CL v-2 In(kp). (4.25) 

Thus for k >> w the correction term in equation (4.24) is smaller than the main first 
one and can be neglected. Substituting (4.23) and (4.24) into equation (4.22) we obtain 
for k >> l /p 

(Aq5r(k)z) ='[ jm dw/( w)I2(A,r(k, 0)') =47r2(An(k, 0)'). (4.26) 

Similar simple relations can be derived for all eveo-order correlations. Indeed, it 
was proved in [25] that any even-order average (An(k, 0)'") obeys Gaussian statistics: 

4 -m 

(4.27) 

By the considerations leading to (4.26), we can now obtain a similar relation for the 
average of any even power of AbAk): 

(4.28) 

This relation means that the distribution of values A@r is probably Gaussian. Unfortu- 
nately there are no theorems conceming odd-order averages of An so that our statement 
about a Gaussian type of distribution of A$,-fluctuations is not rigorous; however the 
relation (4.28) is a strong argument in favour of this statement. In addition, a very 
detailed numerical analysis of statistical properties of the Riemann zeros [ 161 supports 
the assumption that the distribution of fluctuations of An(k,O), and thus that of 
P&fluctuations, is Gaussian. 

For the case of Gaussian distributions of A@r-fluctuations, any averages of functions 
of A$, can be easily found. We are particularly interested in the S-matrix autocorrelation 
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function , 

A Shushin and D M Wardlaw 

k p u l  
= (exp(iG+iAbr))  = exp(ihQ) exp(-(A+f)/Z) 

= exp(i&&(k)) exp(-2 In(pk)) = (pk)-2 exp( iG(k) ) .  (4.29) 

We see that the asymptotic behaviour (at kp >> I )  of the function (4.29) is Lorentzian. 
Unfortunately we cannot describe the dependence of the average on k at small k ;  that 
is, it is impossible to make any statement about its behaviour in the region k < 1. It is 
worth noting that for the rather small increments k<< ko considered, k is proportional 
to the increment of energy A€: k = PE/ ko and therefore the dependence of the average 
(4.29) on A €  is also Lorentzian. However, we should remember that equations (4.25)- 
(4.29) have been derived under the condition k >> 1; that is; AE >> k,. This means that 
at large b, a AE-2-dependence is valid only for A €  larger than the width rE of 
resonances on an energy scale which increases with energy r E - ( E ) ” ’ - k 0  (see 
equation (4.4)). 

Many years ago Ericson [26] proposed a Lorentzian dependence of the S-matrix 
autocorrelation function on A€. The same dependence was obtained later in a semi- 
classical treatment [SI. At the same time, quantum stochastic theory based on the 
Gaussian orthogonal ensemble approximation [X, 271 predicts a strong deviation from 
a Lorentzian dependence on A €  for the autocorrelation function in one-channel 
scattering processes. Unfortunately our results do not enable us to make any definite 
conclusions about the A€-dependence of the autocorrelation function for A €  s rE. If 
this dependence were to turn out to be Lorentzian, the origin of this dependence in 
our model would be more subtle than Ericson’s assumption of strong uncorrelated 
fluctuations of amplitudes of the S-matrix resonances with change of energy. In the 
model under study the predicted asymptotic Lorentzian-like dependence arises from 
strongly correlated fluctuations of the density of states (in our case, density of zeros). 

5. Conclusions 

In this paper we have discussed some characteristic properties of chaotic scattering 
on a leaky surface of negative curvature. It is shown that a peculiarity of low-energy 
scattering (resonance type behaviour) is due to resonance scattering by a ‘bound’ state 
close to the continuum threshold. The major thrust of the paper is the analysis of 
stochastic properties of high energy scattering in the model under study. These proper- 
ties Ere determined by thasc nf the !?icmznn zeros ef !he :-f~!c!io!!. Rkcec! $ECCPSS 
in the mathematical description of stochastic aspects of the distribution of zeros has 
made it possible to investigate some important characteristics of stochastic scattering: 
the pair correlation function of time delay, the distribution function of phaseshifts, 
and the pair correlation function of the S-matrix at different scattering energies. 

The pair correlation function of the S-matrix appears to depend on energy differen- 
ces A €  at large AE according to the inverse square law, that is, asymptotically it is 
Lorentzian. This fact is remarkable since a similar Lorentzian dependence was obtained 
earlier [26] for the correlation function of the S-matrix for a realistic scattering problem 
from totally different assumptions (strong uncorrelated stochastic changes of the 
amplitudes of resonances at different energies). Another way to derive the Lorentzian 
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dependence has recently been proposed by Smilansky (see review in [SI). At the same 
time a very strong deviation from a Lorentzian-type dependence for one-channel 
scattering is predicted by a statistical model based on the Gaussian orthogonal ensemble 
approximation [271. Unfortunately our results do not enable us to check the predictions 
of these theories as applied to the model considered here because our results concern 
only the asymptotic behaviour of the correlation function at PE larger than the 
resonance width rE.  
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